
CSCI2510 Computer Organization

Lecture 07: Cache in Action

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 8.6

mailto:mcyang@cse.cuhk.edu.hk

Recall: Memory Hierarchy

CSCI2510 Lec07: Cache in Action 2

• Register: SRAM

• L1, L2 cache: SRAM

• Main memory: SDRAM

• Secondary storage:

Hard disks or NVM

Processor

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 3

Cache: Fast but Small

• The cache is a small but very fast memory.

– Interposed between the processor and main memory.

• Its purpose is to make the main memory appear to

the processor to be much faster than it actually is.

– The processor does not need to know explicitly about the

existence of the cache, but just feels faster!

• How to? Exploit the locality of reference to “properly”

load some data from the main memory into the cache.
CSCI2510 Lec07: Cache in Action 4

Transparent to Processor

A

B

C

Locality of Reference

• Temporal Locality (locality in time)

– If an item is referenced, it will tend to be referenced

again soon (e.g. recent calls).

– Strategy: When information item (instruction or data) is

first needed, opportunistically bring it into cache (we

hope it will be used soon).

• Spatial Locality (locality in space)

– If an item is referenced, neighboring items whose

addresses are close-by will tend to be referenced soon.

– Strategy: Rather than a single word, fetch more data of

adjacent addresses (unit: cache block) from main

memory into cache.

CSCI2510 Lec07: Cache in Action 5

Cache Usage

• Cache Read (or Write) Hit/Miss: The read (or write)

operation can/cannot be performed on the cache.

• Cache Block / Line: The unit composed of multiple

successive memory words (size: cache block > word).

– The contents of a cache block (of memory words) will be

loaded into or unloaded from the cache at a time.

• Mapping Functions: Decide how cache is organized

and how addresses are mapped to the main memory.

• Replacement Algorithms: Decide which item to be

unloaded from cache when cache is full.
CSCI2510 Lec07: Cache in Action 6

Cache
Main

Memory
Processor

Unit:

Cache Line

Unit:

Word

AA

Read Operation in Cache

• Read Operation:

– Contents of a cache block are loaded from the memory into

the cache for the first read.

– Subsequent accesses that can be (hopefully) performed on

the cache, called a cache read hit.

– The number of cache entries is relatively small, we need to

keep the most likely to-be-used data in cache.

– When an un-cached block is required (i.e., cache read

miss), the replacement algorithm removes an old block and

to create space for the new one if cache is full

CSCI2510 Lec07: Cache in Action 7

Cache Main
MemoryProcessor

first readcache

read hit

replacement
if full?

Write Operation in Cache

• Write Operation:

– Scheme 1: The contents of cache and main memory are

updated at the same time (write-through).

– Scheme 2: Update cache only but mark the item as dirty.

The corresponding contents in main memory will be

updated later when cache block is unloaded (write-back).

• Dirty: The data item needs to be written back to the main memory.

• Which scheme is simpler?

• Which one has better performance?

CSCI2510 Lec07: Cache in Action 8

Cache Main
MemoryProcessor

write-through

write-back replacement

(later)

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 9

Mapping Functions (1/3)

• Cache-Memory Mapping Function: A way to record

which block of the main memory is now in cache.

• What if the case size == the main memory size?

• Trivial! One-to-one mapping is enough!

CSCI2510 Lec07: Cache in Action 10

Cache

(FAST)

Memory

(SLOW)

CPU

(FASTEST)

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 6

Block 7

Question: Do we still need the main memory?

Mapping Functions (2/3)

• Reality: The cache size is much smaller (<<<) than

the main memory size.

• Many-to-one mapping is needed!

– Many blocks in memory compete for one block in cache.

– A block in cache can only represent one block in memory.

CSCI2510 Lec07: Cache in Action 11

Cache

(FAST)

Memory

(SLOW)

CPU

(FASTEST) Block 0

Block 1

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Mapping Functions (3/3)

• Design Considerations:

– Efficient: Determine whether a block is in cache quickly.

– Effective: Make full use of cache to increase cache hit ratio.

• Cache Hit/Miss Ratio: the probability of cache hits/misses.

• In the following discussion, we assume:

– Synonym: Cache Line = Cache Block = Block

– 1 Word = 1 Byte

– 1 Block = 16 Words = 16 Bytes

– Cache Size: 2K Bytes  128 Cache Blocks

• Cache Block (CB): The block in the cache.

– Memory Size: 16-bit Address  216 = 64K Bytes

 4096 Memory Blocks

• Memory Block (MB): The block in the main memory.

CSCI2510 Lec07: Cache in Action 12

0

1

127

Cache

Blocks

…

0

1

4095

Memory

Blocks

…

Modulo (%, mod) Operator

• The modulo (%) operator is used to divide two

numbers and get the remainder.

• Example:

CSCI2510 Lec07: Cache in Action 13

Class Exercise 7.1

• Considering the previous example, what if the divisor

equals to (10)2, (100)2, …, (10000000)2?

CSCI2510 Lec07: Cache in Action 14

Student ID:

Name:

Date:

Direct Mapping (1/4)

CSCI2510 Lec07: Cache in Action 16

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Direct Mapping (2/4)

• Direct Mapped Cache:

Each Memory Block will be

directly mapped to a Cache Block.

• Direct Mapping Function:

– 128? There’re 128 Cache Blocks.

– 32 MBs are mapped to 1 CB.
• MBs 0, 128, 256, …, 3968 CB 0.

• MBs 1, 129, 257, …, 3969  CB 1.

• …

• MBs 127, 255, 383, …, 4095  CB 127.

CSCI2510 Lec07: Cache in Action 17

Main

Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

MB #j CB #(j mod 128)

– A tag is need for each CB.
• Since many MBs will be mapped to a same CB in cache.

• We need occupy some cache space to keep tags.

Direct Mapping (3/4)

CSCI2510 Lec07: Cache in Action 18

Main

Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

7 4

16-bit Main

Memory Address

Tag Block Word

5

Memory Block Number

(i.e. 0~4095)

• Trick: Interpret the 16-bit main

memory address as three fields:

– Tag: Keep track of which MB is

placed in the corresponding CB.

• 5 bits: 16 – (7 + 4) = 5 bits.

– Block: Determine the CB in cache.

• 7 bits: There’re 128 = 27 cache blocks.

– Word: Select one word in a block.

• 4 bits: There’re 16 = 24 words in a block.

• Ex: CPU is looking for (0FF4)16

– MAR = (0000111111110100)2

– MB = (000011111111)2 = (255)10

– CB = (1111111)2 = (127)10

– Tag = (00001)2

00001

0000111111110100

Direct Mapping (4/4)

• Why the first 5 bits for tag? And

why the middle 7 bits for block?

• Given a 16-bit address (t, b, w):

 See if MB (t, b) is already in CB b

by comparing t with the tag of CB b.

 If not, replace CB b with MB (t, b)

and update tag of CB b using t.

 Finally access the word w in CB b.
CSCI2510 Lec07: Cache in Action 19

000011111111010010000000)

00001 Quotient

Remainder

(128)10

MB #j CB #(j mod 128)

Main

Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

7 4

16-bit Main

Memory Address

Tag Block Word

5

Memory Block Number

(i.e. 0~4095)

00001

10000000

1111111

0000111111110100

Class Exercise 7.2

• Assume direct mapping is used to manage

the cache, and all CBs are empty initially.

• Considering CPU is looking for (8000)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 20

Main

Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

7 4

16-bit Main

Memory Address

Tag Block Word

5

Memory Block Number

(i.e. 0~4095)

Associative Mapping (1/3)

CSCI2510 Lec07: Cache in Action 22

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Associative Mapping (2/3)

• Direct Mapping: A MB is restricted to a particular CB

determined by mod operation.

CSCI2510 Lec07: Cache in Action 23

• Associative Mapping:

• Trick: Interpret the 16-bit

main memory address as

two fields:

– Tag: The first 12 bits (i.e. the

MB number) are all used to

represent a MB.

– Word: The last 4 bits for

selecting a word in a block.

tag

tag

tag

Cache

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

Main

Memory

412

Tag Word

16-bit Main

Memory Address

Memory Block Number

(i.e. 0~4095)

Allow a MB to be mapped

to any CB in the cache.

Associative Mapping (3/3)

• How to determine the CB?

– There’s no pre-determined CB for any MB.

– All CBs are used in the first-come-first-serve (FCFS) basis.

• Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000111111110100)2

– MB = (000011111111)2 = (255)10

– Tag = (000011111111)2

CSCI2510 Lec07: Cache in Action 24

tag

tag

tag

Cache

Block 0

Block 1

Block255

Block 4095

Block 0

Block 1

Block 127

Main

Memory

412

Tag Word

16-bit Main

Memory Address

Memory Block Number

(i.e. 0~4095)

000011111111

• Given a 16-bit address (t, w):

– ALL tags of 128 CBs must be

compared with t to see whether

MB t is currently in the cache.

• It can be done in parallel by HW.

Class Exercise 7.3

• Assume associative mapping is used to manage the

cache, and all CBs are empty initially.

• Considering CPU is looking for (8000)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 25

tag

tag

tag

Cache

Block 0

Block 1

Block???

Block 4095

Block 0

Block 1

Block 127

Main

Memory

412

Tag Word

16-bit Main

Memory Address

Memory Block Number

(i.e. 0~4095)

Set Associative Mapping (1/3)

CSCI2510 Lec07: Cache in Action 27

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Set Associative Mapping (2/3)

• Set Associative Mapping: A combination

of direct mapping and associative mapping

CSCI2510 Lec07: Cache in Action 28

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

– Direct: First map a MB to a

cache set (instead of a CB)

– Associative: Then map to

any CB in the cache set

• K-way Set Associative:

A cache set is of k CBs.

– Ex: 2-way set associative

• 128 ÷ 2 = 64 (𝑠𝑒𝑡𝑠)

• For MB #j, (j mod 64)

derives the Set number.

– E.g. MBs 0, 64, 128, …, 4032

 Cache Set #0.

Set Associative Mapping (3/3)

CSCI2510 Lec07: Cache in Action 29

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 4095

Block 255

6 6 4

Tag Set Word

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

16-bit Main

Memory Address

• Consider 2-way set associative.

• Trick: Interpret the 16-bit

address as three fields:

– Tag: The first 6 bits (quotient).

– Set: The middle 6 bits (remainder).

• 6 bits: There’re 26 cache sets.

– Word: The last 4 bits.

Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000111111110100)2

– MB = (000011111111)2 = (255)10

– Cache Set = (111111)2 = (63)10

– Tag = (000011)2

Note: ALL tags of CBs in a cache set must

be compared (done in parallel by HW).
Memory Block Number

(i.e. 0~4095)

000011

Class Exercise 7.4

• Assume 2-way set associative mapping is used,

and all CBs are empty initially.

• Considering CPU is looking for (8000)16:

– Which MB will be loaded into the cache?

– Which CB will store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 30

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 4095

Block ???

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

Summary of Mapping Functions (1/2)

CSCI2510 Lec07: Cache in Action 32

Direct

A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

A Memory Block is

directly mapped (%)

to a Cache Set.

In a Set? Associative!

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Summary of Mapping Functions (2/2)

CSCI2510 Lec07: Cache in Action 33

Direct Associative Set Associative

64 = 26 Cache Sets

Assume: 2-way

set associative

is used.

412

Tag Word

16-bit Main

Memory Address

7 4

16-bit Main

Memory Address

Tag Block Word

5

Memory Block Number

(i.e. 0~4095)
Memory Block Number

(i.e. 0~4095)

128 = 27

Cache Blocks

6 6 4

Tag Set Word

16-bit Main

Memory Address

Memory Block Number

(i.e. 0~4095)

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 34

Replacement Algorithms

CSCI2510 Lec07: Cache in Action 35

• Replace: Write Back (to old MB) & Overwrite (with new MB)

• Direct Mapped Cache:

– The CB is pre-determined directly by the memory address.

– The replacement strategy is trivial: Just replace the pre-

determined CB with the new MB.

• Associative and Set Associative Mapped Cache:

– Not trivial: Need to determine which block to replace.

• Optimal Replacement: Always keep CBs, which will be used

sooner, in the cache, if we can look into the future (not practical!!!).

• Least recently used (LRU): Replace the block that has gone the

longest time without being accessed by looking back to the past.

– Rationale: Based on temporal locality, CBs that have been referenced

recently will be most likely to be referenced again soon.

• Random Replacement: Replace a block randomly.

– Easier to implement than LRU, and quite effective in practice.

Optimal Replacement Algorithm

• Optimal Algorithm: Replace the CB that will not be

used for the longest period of time (in the future).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

– The optimal algorithm causes 9 times of cache misses.

CSCI2510 Lec07: Cache in Action 36

CPU

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0 7 7 7 2 2 2 2 2 7

CB 1 0 0 0 0 4 0 0 0

CB 2 1 1 3 3 3 1 1

time

LRU Replacement Algorithm

• LRU Algorithm: Replace the CB that has not been

used for the longest period of time (in the past).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

– The LRU algorithm causes 12 times of cache misses.

CSCI2510 Lec07: Cache in Action 37

CPU

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0 7 7 7 2 2 4 4 4 0 1 1 1

CB 1 0 0 0 0 0 0 3 3 3 0 0

CB 2 1 1 3 3 2 2 2 2 2 7

time

Class Exercise 7.5

• First-In-First-Out Algorithm: Replace the CB that

has arrived for the longest period of time (in the past).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

• Please fill in the cache and state cache misses.

CSCI2510 Lec07: Cache in Action 38

CPU

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0

CB 1

CB 2

time

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 40

Summary

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 41

