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Recall: Memory Hierarchy
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• Register: SRAM

• L1, L2 cache: SRAM

• Main memory: SDRAM

• Secondary storage: 

Hard disks or NVM

Processor



Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples
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Cache: Fast but Small

• The cache is a small but very fast memory.

– Interposed between the processor and main memory. 

• Its purpose is to make the main memory appear to 

the processor to be much faster than it actually is.

– The processor does not need to know explicitly about the 

existence of the cache, but just feels faster!

• How to? Exploit the locality of reference to “properly” 

load some data from the main memory into the cache.
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Locality of Reference

• Temporal Locality (locality in time)

– If an item is referenced, it will tend to be referenced 

again soon (e.g. recent calls).

– Strategy: When information item (instruction or data) is 

first needed, opportunistically bring it into cache (we 

hope it will be used soon).

• Spatial Locality (locality in space)

– If an item is referenced, neighboring items whose 

addresses are close-by will tend to be referenced soon.

– Strategy: Rather than a single word, fetch more data of 

adjacent addresses (unit: cache block) from main 

memory into cache.
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Cache Usage

• Cache Read (or Write) Hit/Miss: The read (or write) 

operation can/cannot be performed on the cache.

• Cache Block / Line: The unit composed of multiple 

successive memory words (size: cache block > word).

– The contents of a cache block (of memory words) will be 

loaded into or unloaded from the cache at a time.

• Mapping Functions: Decide how cache is organized

and how addresses are mapped to the main memory.

• Replacement Algorithms: Decide which item to be 

unloaded from cache when cache is full.
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Read Operation in Cache

• Read Operation:

– Contents of a cache block are loaded from the memory into 

the cache for the first read.

– Subsequent accesses that can be (hopefully) performed on 

the cache, called a cache read hit.

– The number of cache entries is relatively small, we need to 

keep the most likely to-be-used data in cache.

– When an un-cached block is required (i.e., cache read 

miss), the replacement algorithm removes an old block and 

to create space for the new one if cache is full
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Write Operation in Cache

• Write Operation:

– Scheme 1: The contents of cache and main memory are 

updated at the same time (write-through).

– Scheme 2: Update cache only but mark the item as dirty. 

The corresponding contents in main memory will be 

updated later when cache block is unloaded (write-back).

• Dirty: The data item needs to be written back to the main memory.

• Which scheme is simpler?

• Which one has better performance?
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Mapping Functions (1/3)

• Cache-Memory Mapping Function: A way to record 

which block of the main memory is now in cache.

• What if the case size == the main memory size?

• Trivial! One-to-one mapping is enough!
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Question: Do we still need the main memory?



Mapping Functions (2/3)

• Reality: The cache size is much smaller (<<<) than 

the main memory size.

• Many-to-one mapping is needed!

– Many blocks in memory compete for one block in cache.

– A block in cache can only represent one block in memory.
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Mapping Functions (3/3)

• Design Considerations:

– Efficient: Determine whether a block is in cache quickly.

– Effective: Make full use of cache to increase cache hit ratio.

• Cache Hit/Miss Ratio: the probability of cache hits/misses.

• In the following discussion, we assume:

– Synonym: Cache Line = Cache Block = Block

– 1 Word = 1 Byte

– 1 Block = 16 Words = 16 Bytes

– Cache Size: 2K Bytes  128 Cache Blocks

• Cache Block (CB): The block in the cache.

– Memory Size: 16-bit Address  216 = 64K Bytes

 4096 Memory Blocks

• Memory Block (MB): The block in the main memory.
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Modulo (%, mod) Operator

• The modulo (%) operator is used to divide two 

numbers and get the remainder.

• Example:
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Class Exercise 7.1

• Considering the previous example, what if the divisor 

equals to (10)2, (100)2, …, (10000000)2?
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Direct Mapping (1/4)
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•A Memory Block is 
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• A Memory Block is 
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Direct Mapping (2/4)

• Direct Mapped Cache:                                        

Each Memory Block will be 

directly mapped to a Cache Block.

• Direct Mapping Function:

– 128? There’re 128 Cache Blocks.

– 32 MBs are mapped to 1 CB.
• MBs 0, 128, 256, …, 3968 CB 0.

• MBs 1, 129, 257, …, 3969  CB 1.

• …

• MBs 127, 255, 383, …, 4095  CB 127.
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– A tag is need for each CB.
• Since many MBs will be mapped to a same CB in cache.

• We need occupy some cache space to keep tags. 



Direct Mapping (3/4)
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• Trick: Interpret the 16-bit main 

memory address as three fields:

– Tag: Keep track of which MB is 

placed in the corresponding CB.

• 5 bits: 16 – (7 + 4) = 5 bits.

– Block: Determine the CB in cache.

• 7 bits: There’re 128 = 27 cache blocks.

– Word: Select one word in a block.

• 4 bits: There’re 16 = 24 words in a block.

• Ex: CPU is looking for (0FF4)16

– MAR = (0000111111110100)2

– MB = (000011111111)2 = (255)10

– CB = (1111111)2 = (127)10

– Tag = (00001)2

00001

0000111111110100



Direct Mapping (4/4)

• Why the first 5 bits for tag? And 

why the middle 7 bits for block?

• Given a 16-bit address (t, b, w):

 See if MB (t, b) is already in CB b

by comparing t with the tag of CB b.

 If not, replace CB b with MB (t, b)

and update tag of CB b using t.

 Finally access the word w in CB b.
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Class Exercise 7.2

• Assume direct mapping is used to manage 

the cache, and all CBs are empty initially.

• Considering CPU is looking for (8000)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?
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Associative Mapping (1/3)
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Associative Mapping (2/3)

• Direct Mapping: A MB is restricted to a particular CB

determined by mod operation.
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• Associative Mapping:

• Trick: Interpret the 16-bit 

main memory address as 

two fields:

– Tag: The first 12 bits (i.e. the 

MB number) are all used to 

represent a MB.

– Word: The last 4 bits for 

selecting a word in a block.
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Allow a MB to be mapped 

to any CB in the cache.



Associative Mapping (3/3)

• How to determine the CB?

– There’s no pre-determined CB for any MB.

– All CBs are used in the first-come-first-serve (FCFS) basis.

• Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000111111110100)2

– MB = (000011111111)2 = (255)10

– Tag = (000011111111)2
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• Given a 16-bit address (t, w):

– ALL tags of 128 CBs must be 

compared with t to see whether 

MB t is currently in the cache.

• It can be done in parallel by HW.



Class Exercise 7.3

• Assume associative mapping is used to manage the 

cache, and all CBs are empty initially.

• Considering CPU is looking for (8000)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?
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Set Associative Mapping (1/3)
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Set Associative Mapping (2/3)

• Set Associative Mapping: A combination 

of direct mapping and associative mapping
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– Direct: First map a MB to a 

cache set (instead of a CB)

– Associative: Then map to 

any CB in the cache set

• K-way Set Associative:   

A cache set is of k CBs.

– Ex: 2-way set associative

• 128 ÷ 2 = 64 (𝑠𝑒𝑡𝑠)

• For MB #j, (j mod 64) 

derives the Set number.

– E.g. MBs 0, 64, 128, …, 4032 

 Cache Set #0.



Set Associative Mapping (3/3)
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• Consider 2-way set associative.

• Trick: Interpret the 16-bit 

address as three fields:

– Tag: The first 6 bits (quotient).

– Set: The middle 6 bits (remainder).

• 6 bits: There’re 26 cache sets.

– Word: The last 4 bits.

Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000111111110100)2

– MB = (000011111111)2 = (255)10

– Cache Set = (111111)2 = (63)10

– Tag = (000011)2

Note: ALL tags of CBs in a cache set must 

be compared (done in parallel by HW). 
Memory Block Number

(i.e. 0~4095)

000011



Class Exercise 7.4

• Assume 2-way set associative mapping is used,                  

and all CBs are empty initially.

• Considering CPU is looking for (8000)16:

– Which MB will be loaded into the cache?

– Which CB will store the MB?

– What is the new tag for the CB?
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Summary of Mapping Functions (1/2)
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Summary of Mapping Functions (2/2)
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Replacement Algorithms
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• Replace: Write Back (to old MB) & Overwrite (with new MB)

• Direct Mapped Cache:

– The CB is pre-determined directly by the memory address.

– The replacement strategy is trivial: Just replace the pre-

determined CB with the new MB.

• Associative and Set Associative Mapped Cache:

– Not trivial: Need to determine which block to replace.

• Optimal Replacement: Always keep CBs, which will be used 

sooner, in the cache, if we can look into the future (not practical!!!).

• Least recently used (LRU): Replace the block that has gone the 

longest time without being accessed by looking back to the past.

– Rationale: Based on temporal locality, CBs that have been referenced 

recently will be most likely to be referenced again soon.

• Random Replacement: Replace a block randomly.

– Easier to implement than LRU, and quite effective in practice.



Optimal Replacement Algorithm

• Optimal Algorithm: Replace the CB that will not be 

used for the longest period of time (in the future).

• Given an associative mapped cache, which is 

composed of 3 Cache Blocks (CBs 0~2).

– The optimal algorithm causes 9 times of cache misses.
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LRU Replacement Algorithm

• LRU Algorithm: Replace the CB that has not been 

used for the longest period of time (in the past).

• Given an associative mapped cache, which is 

composed of 3 Cache Blocks (CBs 0~2).

– The LRU algorithm causes 12 times of cache misses.
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Class Exercise 7.5

• First-In-First-Out Algorithm: Replace the CB that 

has arrived for the longest period of time (in the past).

• Given an associative mapped cache, which is 

composed of 3 Cache Blocks (CBs 0~2).

• Please fill in the cache and state cache misses.
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Summary

• Cache Basics
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– Random Replacement

• Working Examples
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