HE P LKF

The Chinese University of Hong Kong

CSCI2510 Computer Organization
Lecture O7: Cache in Action

Ming-Chang YANG
mcyang@cse.cuhk.edu.h}(

9 B T e G e
s By, MR THIE SRR - e
=<7 1 . g RETEEREE
7 N — ,jﬁ = T -
e
=N B VR - | %l .
LI R> = Wi ! ol § bbbt
- 'l ’’’’’’’’’’
N e
1§
o
T

mailto:mcyang@cse.cuhk.edu.hk

Recall: Memory Hierarchy A

Processor Processor
* Register: SRAM Registers
[ncreasing [ncreasing Increasing
size . speed cost per bit
P L b
* L1, L2 cache: SRAM
e L2
. Main
 Main memory: SDRAM memory
o Secondary Storage: 1 Magnetic disk

secondary

Hard dlSkS or NVM memory

Outline

« Cache Basics

* Mapping Functions
— Direct Mapping
— Associative Mapping
— Set Associative Mapping

« Replacement Algorithms
— Least Recently Used (LRU) Replacement
— Random Replacement

* Working Examples

CSCI2510 LecO7: Cache in Action 3

Cache: Fast but Small

* The cache is a small but very fast memory.
— Interposed between the processor and main memory.

Processor

|

| I .

| Cacl Main
- I ‘ache |-l—

I I memory

I I

|

* |ts purpose Is to make the main memory appear to
the processor to be much faster than it actually is.

— The processor does not need to know explicitly about the
existence of the cache, but just feels faster!

 How to? Exploit the locality of reference to “properly”
load some data from the main memory into the cache.

CSCI2510 LecO7: Cache in Action

4

Locality of Reference

 Temporal Locality (locality in time)

— If an item is referenced, it will tend to be referenced
again soon (e.g. recent calls).

— Strategy: When information item (instruction or data) is
first needed, opportunistically bring it into cache (we
hope it will be used soon).

« Spatial Locality (locality in space)
— If an item Is referenced, neighboring items whose
addresses are close-by will tend to be referenced soon.

— Strategy: Rather than a single word, fetch more data of
adjacent addresses (unit: cache block) from main
memory into cache.

CSCI2510 LecO7: Cache in Action

Cache Usage

 Cache Read (or Write) Hit/Miss: The read (or write)
operation can/cannot be performed on the cache.

5 Cach Main
rocessor == —— ache | — -
Unit: Unit: Memory

Word Cache Line

« Cache Block / Line: The unit composed of multiple
successive memory words (size: cache block > word).
— The contents of a cache block (of memory words) will be
loaded into or unloaded from the cache at a time.
 Mapping Functions: Decide how cache is organized
and how addresses are mapped to the main memory.

 Replacement Algorithms: Decide which item to be
unloaded from cache when cache is full.

CSCI2510 LecO7: Cache in Action 6

Read Operation in Cache

 Read Operation:

— Contents of a cache block are loaded from the memory into
the cache for the first read.

— Subsequent accesses that can be (hopefully) performed on
the cache, called a cache read hit.

— The number of cache entries is relatively small, we need to
keep the most likely to-be-used data in cache.

— When an un-cached block is required (i.e., cache read
miss), the replacement algorithm removes an old block and
to create space for the new one if cache is full

cache first read
read hit <
Processor [Cache

Main
» Memory
replacement

if full?
CSCI2510 LecO7: Cache in Action 7

Write Operation in Cache

* Write Operation:

— Scheme 1: The contents of cache and main memory are
updated at the same time (write-through).

— Scheme 2: Update cache only but mark the item as dirty.
The corresponding contents in main memory will be
updated later when cache block is unloaded (write-back).

* Dirty: The data item needs to be written back to the main memory.

write-through

Processor » Cache | ... > Ml\e/lrfrilicr)]ry

write-back replacement
(later)

* Which scheme is simpler?
* Which one has better performance?

CSCI2510 LecO7: Cache in Action

Outline

* Mapping Functions
— Direct Mapping
— Associative Mapping
— Set Associative Mapping

CSCI2510 LecO7: Cache in Action 9

Mapping Functions (1/3)

 Cache-Memory Mapping Function: A way to record
which block of the main memory is now in cache.

 What If the case size == the main memory size?

Cache Memory

(FAST) (SLOW)

Block 0 '« » Block 0

Block 1 = » Block 1

CPU ’ Block 2 » Block 2
(FASTEST) Block 3 < » Block 3
Block 4 < » Block 4

Block 5 < » Block 5

Block 6 < » Block 6

Block 7 < » Block 7

 Trivial! One-to-one mapping is enough!

Question: Do we still need the main memory?

Mapping Functions (2/3)

« Reality: The cache size is much smaller (<<<) than
the main memory size.

 Many-to-one mapping is needed!
— Many blocks in memory compete for one block in cache.
— A block in cache can only represent one block in memory.

Memory
(SLOW)

Block O

CPU
(FASTEST)

CSCI2510 LecO7: Cache in Action

Cache
(FAST)

Block O
Block 1

Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7

11

Mapping Functions (3/3)

« Design Considerations:
— Efficient: Determine whether a block is in cache quickly.

— Effective: Make full use of cache to increase cache hit ratio.
« Cache Hit/Miss Ratio: the probability of cache hits/misses.

* In the following discussion, we assume: 0
— Synonym: Cache Line = Cache Block = Block |t -
— 1 Word = 1 Byte
— 1 Block = 16 Words = 16 Bytes 197

— Cache Size: 2K Bytes - 128 Cache Blocks cache

- Cache Block (CB): The block in the cache. Blocks | 4095
Memory

— Memory Size: 16-bit Address = 216 = 64K Bytes Blocks
- 4096 Memory Blocks

« Memory Block (MB): The block in the main memory.

CSCI2510 LecO7: Cache in Action 12

Modulo (%, mod) Operator

 The modulo (%) operator is used to divide two
numbers and get the remainder.

« Example:
00001101 «— Quotient
Divisor —» 1011]1001001 1 «— Dividend
1011
001110
1011
Yy
00111
1 01

| 0) «— Remainder

CSCI2510 LecO7: Cache in Action 13

Student ID:

Class Exercise 7.1 Name:

* Considering the previous example, what if the divisor
equals to (10),, (100),, ..., (10000000),?

CSCI2510 LecO7: Cache in Action 14

Direct Mapping (1/4)

Direct

A Memory Block is

directly mapped (%)
to a Cache Block.

) | %
o Sy Wy

Cache Memory
Blocks Blocks

Direct Mapping (2/4)

 Direct Mapped Cache: e
Each Memory Block will be Block 0
directly mapped to a Cache Block. o Block 1

* Direct Mapping Function: 291 Blocko 1 J

. . Ltag | giock1 \ -
MB #3 > CB #(3 mod 128) =
— 1287 There're 128 Cache Blocks. ' ' B:Zk -
— 32 MBs are mapped to 1 CB. | |
- MBs 0, 128, 256, ..., 3968 - CB 0. 1 T
- MBs 1, 129, 257, ..., 3969 - CB 1.
* ... Block 256
+ MBs 127, 255, 383, ..., 4095 > CB 127. | Block 257
— Atag is need for each CB. J)

» Since many MBs will be mapped to a same CB in cache.
* We need occupy some cache space to keep tags.

CSCI2510 LecO7: Cache in Action 17

Direct Mapping (3/4)

« Trick: Interpret the 16-bit main
memory address as three fields:

— Tag: Keep track of which MB is

Cache

placed in the corresponding CB. tag

Block O

+ 5 bits: 16 — (7 + 4) = 5 bits. [

Block 1

— Block: Determine the CB in cache.
e 7 bits: There're 128 = 27 cache blocks.

ta
— Word: Select one word in a block. oooo1
« 4 bits: There're 16 = 24 words in a block.

« Ex: CPU is looking for (OFF4),, 0000111111110100
— MAR = (0000111111110100), Memory Address

Block 127

16-bit Main

N\
Block Word

— MB = (000011111111), = (255);, =

7

4

J

— CB = (1111111), = (127)4, \
— Tag — (00001)2

Memory Block Number

(i.e.

Y

0~4095)

Main
Memory

Block O

Block 1

J/
g

Block 127

J/
g

Block 128

Block 129

J—
g

Block 255

Block 256

Block 257

!

!

Block 4095

18

Direct Mapping (4/4)

* Why the first 5 bits for tag? And an.
why the middle 7 bits for block? Block 0
MB #j - CB #(j mod 128) o | Block 1 J
00001 Quotient J_ :E:
10000000)0000111111116468
(128),, 10000000)) Block 12
1111111 Remainder — Block 129
. . 00001 Block 127 J_ J_
« Given a 16-bit address (t, b, w):

® Seeif MB (t, b) is already InCB b oo00111111110100 ook
by comparing t with the tag of CB b. switmain Block 256

Memorwddress Block 257

@ If not, replace CB b with MB (t, B) "7 8lock wora’ J J

and update tag of CB b using t. > 1 17
® Finally access the word w in CB b, Vemer siock Number

CSCI2510 LecO7: Cache in Action 19

Class Exercise 7.2

« Assume direct mapping Is used to manage Jin
the cache, and all CBs are empty initially. Block 0
» Considering CPU is looking for (8000),: | ke J
— Which MB will be loaded into the cache? T ’
— Which CB will be used to store the MB? ..
— What is the new tag for the CB? tag £ Block 0 Block 128
Ltag | giock1 Block 129
L | 4)
_Block 127
16-bit Main Block 256
Memorwddress Block 257
Tag Block Wzrd J, J_

5 7
N J
Y
Memory Block Number _
(i-e. 0~4095) SLILRICE

CSCI2510 LecO7: Cache in Action 20

Associlative Mapping (1/3)

Direct Associative Set Associlative

sAlMIEmory Blockis™ A Memory Block FeSANMEMONY BIOCKIS
directhyymapped (%) can be mapped to directly mapped
10 a Cache Block. any Cache Block. (%) to a Cache Set.

(First come first serve!) (In a set? Associative!)

0 0

1 1

0 2 b‘ setl0] 2

1 3 S 0|1 3

2 4 :ﬁé setl 2| 4

3 5 < 13 5

6 6

4 4
Cache Memory Cache Memory Cache Memory
Blocks Blocks Blocks Blocks Blocks Blocks

Associlative Mapping (2/3)

« Direct Mapping: A MB is restricted to a particular CB
determined by mod operation.

« Associative Mapping:

Allow a MB to be mapped vemory
to any CB In the cache. o Slock?
. . | fag — Block 1
» Trick: Interpret the 16-bit ——
main memory address as
two fields:
: . . a9 Block 127 Block i
— Tag: The first 12 bits (i.e. the
MB number) are all used to Memory Address
represent a MB. “ g word
— Word: The last 4 bits for — e
selecting a word in a block. Memory Block Number
CSCI2510 Lec07: Cache in Action e 23

Associlative Mapping (3/3)

« How to determine the CB?

— There’s no pre-determined CB for any MB.
— All CBs are used in the first-come-first-serve (FCFS) basis.

» Ex: CPU is looking for (OFF4)
— Assume all CBs are empty.

000011111111 Cache

Main
Memory

Block O

— MAR =(0000111111110100), |

fag

Block O

Block 1

tag

— MB = (000011111111), = (255),, |
— Tag = (000011111111),

Block 1

« Given a 16-bit address (t, w): |

tag

— ALL tags of 128 CBs must be
compared with t to see whether
MB t Is currently in the cache.

* It can be done in parallel by HW.
CSCI2510 Lec07: Cache in Action

Block 127

16-bit Main
Memory Address

A

r N\
Tag Word
12 4

N J
Y

Memory Block Number
(i.e. 0~4095)

Block 255

Block 4095

24

Class Exercise 7.3

« Assume associative mapping is used to manage the
cache, and all CBs are empty initially.

» Considering CPU is looking for (8000),:
— Which MB will be loaded into the cache?
— Which CB will be used to store the MB?

Cache

Main
Memory

Block O

— What is the new tag for the CB? |

fag

Block O

Block 1

tag

Block 1

tag

CSCI2510 LecO7: Cache in Action

Block 127

Block???

16-bit Main
Memory Address

Al

'

Tag

N\
Word

12

4

¢

J

Y

Memory Block Number

(i.e. 0~4095)

Block 4095

25

Set Associative Mapping (1/3) g

Set Associlative

« AMemory Block is

directly mapped
(%) to a Cache Set.

(In a set? Associative!)

Cache Memory
Blocks Blocks

Set Associative Mapping (2/3)

« Set Associative Mapping: A combination
of direct mapping and associative mapping

Block O

— Direct: First map a MB to a

Cache

Block 1

cache set (instead of a CB)

Block O

Block 1

ol

— Associative: Then map to

Block 2

Block 63

any CB in the cache set

Block 3

Block 64

« K-way Set Associative:
A cache set is of k CBs.

Block 65

Block 126

— Ex: 2-way set associative > 63{

Block 127

Block 127

e 128 + 2 = 64 (sets)
 For MB #73, (§ mod 64)
derives the Set number.
— E.g. MBs 0, 64, 128, ..., 4032
- Cache Set #0.

CSCI2510 LecO7: Cache in Action

Block 128

Block 129

Block 4095

28

Set Associative Mapping (3/3)

« Consider 2-way set associative. Memory
« Trick: Interpret the 16-bit 2o
address as three fields: Cache o
— Tag: The first 6 bits (quotient). Set 0< Block 0 1 1
| ta
— Set: The middle 6 bits (remainder). : taz e 1st Block 63
* 6 bits: There’re 26 cache sets. sl L e Block 64
— Word: The last 4 bits. | S Block 65
Ex: CPU is looking for (OFF4), T T L)’
000011 1 y
— Assume all CBs are empty. cot 63 Block 126 d
3 2n Block 127
— MAR = (0000111111110100), 2] Block 127 [N\ i
— MB = (000011111111), = (255),, Jlsoitan —
— Cache Set = (111111)2 (63)10 ‘ Tag Set Worg
— Tag = (000011), 6 6 | 4 T T
Note: ALL tags of CBs in a cache set must ;.. .. siock Number 64th || Block 409571
be compared (done in parallel by HW). (i.e. 0~4095) 29

Class Exercise 7.4

« Assume 2-way set associative mapping is used

and all CBs are empty initially.

» Considering CPU is looking for (8000),:
— Which MB will be loaded into the cache? Cache

— Which CB will store the MB?
— What is the new tag for the CB?

CSCI2510 LecO7: Cache in Action

Set O0g

Set 1<

Set 63{

Main
Memory

Block O

Block 1

tag Block O Block 63
| [_tag Block 1 Block 64
Lt | g5ocko Block 65
tag Block 3
T Block 127
tag Block 126 L
~
t
a9 Block 127
Block ??7?
16-bit Main
Memory Address
A ~ ~
'd) ~ ~
Tag Set Word
6 6 4
| | ' | Block 4095
A\ v
Y
Memory Block Number
(i.e. 0~4095) 30

Summary of Mapping Functions (1/2) %

oAl = & T

Direct Associative

A Memory Block is A Memory Block
directly mapped (%) can be mapped to

Set Associative

A Memory Block is
directly mapped (%)

to a Cache Block. any Cache Block.

(First come first serve!)

X\

zg
N
N\

N

X g
AN

N

\

7

0‘0
V«‘\

v//‘
’ >
4

\\\\:
?

WIN|F|O

Ol IN|IF|O

-

Cache Memory Cache Memory

Blocks Blocks Blocks Blocks
CSCI2510 Lec07: Cache in Action

to a Cache Set.
In a Set? Associative!

0
1
set| 0] 2
0 [1 3
<
Set| 2 4
1 3] 5
6
4

Cache Memory

Blocks Blocks
32

Summary of Mapping Functions (2/2)

Direct

Associlative

) Main
M"gmgry Memory
Block 0 Block 0
Block 1
Block 1
J’ ~
tag Block 0 Block 128 I tag Block 0 { 1
38 | Block1 Block 129 fag Block 1
> s - - Blocki
— 5 | Beck 127
Block 256
Block 257 1 1
128/= 27
Cache Blocks 2 >
16-bit Main 16-bit Main Block 4095
Memory Address Memory Address
Al Ve A N\
r N
Tag Block Word Tag Word
5 7 4 12 4
A\ J \ J
Y Y
Memory Block Number Memory Block Number
(i.e. 0~4095) (i.e. 0~4095)

Set Associlative

Main
Memory
Assume: 2-way
] . Block 0
set assoclative
- Block 1
IS used.
Cache J’ -
seto [9 | Biocko (
tag Block 1 Block 63
| Tag S— Block 64
Set 1 o
fag EOR Block 65
f ‘
Block 127
Sotes tag Block 126
- Block 128
Block 127
Block 129
64 = 25 Cache Sets 7 -
16-bit Main Block 4095
Memory Address
AL
r N\
Tag Set Word
6 6 4
N J
Y
Memory Block Number
(i.e. 0~4095) 33

Outline

« Replacement Algorithms
— Least Recently Used (LRU) Replacement
— Random Replacement

CSCI2510 LecO7: Cache in Action 34

Replacement Algorithms

« Replace: Write Back (to old MB) & Overwrite (with new MB)

* Direct Mapped Cache:
— The CB is pre-determined directly by the memory address.

— The replacement strategy is trivial: Just replace the pre-
determined CB with the new MB.

« Associative and Set Associative Mapped Cache:

— Not trivial: Need to determine which block to replace.

« Optimal Replacement: Always keep CBs, which will be used
sooner, in the cache, if we can look into the future (not practical!!!).

« Least recently used (LRU): Replace the block that has gone the
longest time without being accessed by looking back to the past.

— Rationale: Based on temporal locality, CBs that have been referenced
recently will be most likely to be referenced again soon.

« Random Replacement: Replace a block randomly.
— Easier to implement than LRU, and quite effective in practice.

35

Optimal Replacement Algorithm

« Optimal Algorithm: Replace the CB that will not be
used for the longest period of time (in the future).

« Glven an associative mapped cache, which is
composed of 3 Cache Blocks (CBs 0~2).

CPU ///\.75/—\/:’

ACCESS 7 01 20304230321201701
CBO 7772 2 2 2 2 7
CB1L 000 0 4 0 0 0
CB 2 NN 3 1 1

tir:ne
— The optimal algorithm causes 9 times of cache misses.

CSCI2510 LecO7: Cache in Action 36

LRU Replacement Algorithm

 LRU Algorithm: Replace the CB that has not been
used for the longest period of time (in the past).

« Glven an associative mapped cache, which is
composed of 3 Cache Blocks (CBs 0~2).

CPU ,—<L XN

ACCess 7 0120304230321201701

CBO 7 7 7 2 2
CB1 00O 0
CB 2 11 3

4 4 4 0
00 3 3
3 2 2 2

1 1 1
3 0 0
2 2 7

time

— The LRU algorithm causes 12 times of cache misses.

CSCI2510 LecO7: Cache in Action

37

Class Exercise 7.5

* First-In-First-Out Algorithm: Replace the CB that
has arrived for the longest period of time (in the past).

« Glven an associative mapped cache, which is
composed of 3 Cache Blocks (CBs 0~2).

 Please fill in the cache and state cache misses.

CPU
ACCESS 7 01 20304230321201701
CB 0

CB 1

CB 2

time

CSCI2510 LecO7: Cache in Action 38

Outline

* Working Examples

CSCI2510 LecO7: Cache in Action 40

Summary

« Cache Basics

* Mapping Functions
— Direct Mapping
— Associative Mapping
— Set Associative Mapping

« Replacement Algorithms
— Least Recently Used (LRU) Replacement
— Random Replacement

* Working Examples

CSCI2510 LecO7: Cache in Action 41

